首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2157篇
  免费   353篇
  国内免费   322篇
电工技术   12篇
综合类   72篇
化学工业   705篇
金属工艺   21篇
机械仪表   28篇
建筑科学   19篇
矿业工程   8篇
能源动力   118篇
轻工业   1380篇
水利工程   9篇
石油天然气   15篇
无线电   36篇
一般工业技术   333篇
冶金工业   9篇
原子能技术   2篇
自动化技术   65篇
  2024年   4篇
  2023年   47篇
  2022年   55篇
  2021年   60篇
  2020年   90篇
  2019年   86篇
  2018年   76篇
  2017年   76篇
  2016年   89篇
  2015年   133篇
  2014年   138篇
  2013年   239篇
  2012年   312篇
  2011年   312篇
  2010年   270篇
  2009年   237篇
  2008年   102篇
  2007年   160篇
  2006年   77篇
  2005年   58篇
  2004年   56篇
  2003年   24篇
  2002年   26篇
  2001年   24篇
  2000年   9篇
  1999年   17篇
  1998年   7篇
  1997年   10篇
  1996年   2篇
  1995年   5篇
  1994年   4篇
  1993年   11篇
  1990年   2篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1981年   1篇
  1980年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有2832条查询结果,搜索用时 31 毫秒
1.
纳米纤维素作为一种性能优越的可再生纳米材料,应用前景极为广阔。然而,由于纳米纤维素结构上富含羟基,使其具有极强的亲水性,严重影响了纳米纤维素的疏水性能,并且在一定程度上限制了其在复合材料领域的应用。综述了纳米纤维素疏水改性的研究进展,从物理吸附、表面化学修饰(甲硅烷化、烷酰化、酯化等)、聚合物接枝共聚3个方面简述了目前应用较为广泛的疏水化改性方法,并对疏水纳米纤维素在包装材料、造纸、水净化等方面的应用现状进行了总结。最后对疏水改性纳米纤维素的未来发展进行了展望,旨在为疏水纳米纤维素的研究和应用提供参考。  相似文献   
2.
《Ceramics International》2019,45(8):9799-9806
(Nb1-xTax)4AlC3 (x = 0–0.5) ceramics were prepared by the hot press sintering method. The XRD results show that the second phase (Nb1-xTax)C is formed when the Ta content increases to 25 mol%. The SEM micrographs show that (Nb1-xTax)C has a core/rim structure, whose formation mechanism was also investigated. Substituting some Ta for Nb can significantly improve the mechanical properties of Nb4AlC3. (Nb0.75Ta0.25)4AlC3 exhibits an excellent fracture toughness of 8.3 ± 0.3 MPa m1/2 at room temperature (RT). The highest Young's modulus (349 ± 16 GPa) and Vickers hardness (4.5 ± 0.3 GPa) at RT are exhibited by the (Nb0.5Ta0.5)4AlC3 sample, which correlate to increases of 18% and 80%, respectively, compared with those of Nb4AlC3. The flexural strengths of (Nb0.5Ta0.5)4AlC3 are 439 ± 18 MPa at RT and 344 ± 22 MPa at 1100 °C, which correlate to increases of 27% and 45%, respectively, compared with those of Nb4AlC3. The solid solution of Ta and the formation of (Nb1-xTax)C are beneficial to the strengthening of Nb4AlC3. The coefficient of thermal expansion (CTE) increases slightly from 7.08 × 10−6 K−1 for Nb4AlC3 to 7.24 × 10−6 K−1 for (Nb0.75Ta0.25)4AlC3 at 25–1400 °C. The thermal conductivity of (Nb0.75Ta0.25)4AlC3 (28.4–29.8 W/m·K) is higher than that of Nb4AlC3 (18.1–21.2 W/m·K) over the whole test range (25–1000 °C). Owing to their excellent mechanical and thermal properties, Ta-doped Nb4AlC3 ceramics have good potential as structural materials.  相似文献   
3.
Extensive research has been directed towards the reinvention of paper for advanced applications. Nanocellulose-based films, a novel class of specialty paper primarily made of nanocellulose, demonstrate an ideal combination of sustainability and enhanced or novel properties. Enormous efforts have been devoted to enhancing these intrinsic properties and/or creating novel functions to expedite and expand the use of these materials in high-end fields such as touchscreen, solar cells, and nanogenerators. We review state-of-the-art advances in nanocellulose-based films and their utilization in several emerging and promising fields. We begin with an introduction of four types of nanocellulose-based films distinguished by their functional material loads (e.g., synthetic macromolecular polymers, 0D, 1D, and 2D nanomaterials), which involves their manufacturing techniques, structure design, properties, novel functions, and underlying principles. Additionally, we summarize the value-added applications of nanocellulose-based films in flexible electronics, energy converting or harvesting devices, and water treatment. Finally, we provide a critical viewpoint on the remaining challenges and future opportunities in this field.  相似文献   
4.
In order to effectively apply soybean meal for the preparation of water-resistant soybean-based adhesives for plywood, the effects of three typical soybean meal products, namely, low-temperature soybean meal (LM), high-temperature soybean meal (HM), and physical soybean meal (PM), on the properties of soybean-based adhesive were investigated. The results indicated that the number of reactive groups in the three soybean meals followed the order LM > HM > PM, which in turn led to various crosslinking densities when these soybean meals were crosslinked by epichlorohydrin-modified polyamide (EMPA) during the curing process. The LM soybean adhesive had 6.6% higher soaking bond strength and 16.5% higher boiling-dry-boiling bond strength than the HM soybean adhesive, and 19% higher soaking bond strength and 33% higher boiling-dry-boiling bond strength than the PM soybean adhesive, respectively. These three soybean meals could be used to prepare soybean adhesives for interior-use plywood because all plywood panels bonded with their adhesives passed a water-soaking test at 63 °C for 3 h, but only the LM soybean adhesive achieved the desired water resistance for floor-base plywood. Among the three evaluated soybean meals, LM was the most promising raw material for the preparation of soybean-based adhesive because of a greater number of reactive groups, higher crosslinking density, and superior bond strength. Plywood panel bonded with HM soybean adhesive had a water resistance lower than, but very close to, the standard required value (>0.8 MPa) for floor-base plywood.  相似文献   
5.
以柠条为原料,分析了其化学组分和纤维形态,并探讨了柠条双螺杆CMP法的制浆工艺以及浆料的纤维形态和成纸的物理性能。研究结果表明:与针、阔叶木相比,柠条原料中纤维素和综纤维素质量分数较低,苯醇抽出物和热水抽出物质量分数较高,柠条纤维长度总体偏短,木质部和皮部的纤维质量平均长度分别为0.621和0.819 mm,还存在部分杂细胞。采用3.5% Na2SO3和1.5% NaOH常温预浸12 h、90℃汽蒸1 h后再用双螺杆挤浆机在质量分数35%下进行搓丝,并结合高浓盘磨机磨浆,所得CMP浆得率可达73%。柠条CMP浆基本保持了纤维原有的长度,质量平均长度达0.650 mm,长宽比为32.7,纤维解离较好,但分丝帚化情况不理想,含有部分纤维束和杂细胞。当加拿大游离度为300 mL时,柠条CMP浆成纸的环压强度指数和松厚度较高,分别为8.67(N·m)/g和2.56 cm3/g,抗张指数为19.6(N·m)/g,本色浆白度较高,达50%(ISO)。柠条CMP浆适合配抄瓦楞原纸等包装用纸,漂白后可配抄新闻纸和白板纸。  相似文献   
6.
BackgroundCellulose nanocrystalline (CNC) particles possess unique functional properties such as vastly modifiable surface, considerable mechanical strength and acid resistance, as well as, high aspect ratio. CNCs have received great attention for application in diverse fields of technology including (composite) hydrogels fabrication for the gastric protection and enteral delivery of drugs and nutraceuticals.Scope and approachThe orogastrointestinal digestibility and absorbability of the orally administered CNCs is overviewed in the current article. At first, some surface charge-related characteristics of acid-isolated CNCs are communicated. Then, the biocompatibility and biodegradability of CNCs and CNC-reinforced hydrogels are reviewed, followed by presenting credible digestion and absorption scenarios. Finally, the post-absorption metabolism of CNCs is briefly debated.Key findings and conclusionsBacterial cellulose shows good biocompatibility and hemocompatibility. CNC oxidation provides biologically beneficial impacts; for instance, the TEMPO- and periodate-oxidized CNCs have been shown to regulate some blood metabolic variables and improve the degradability in simulated human blood plasma, respectively. Spherical and carboxyl-bearing cellulose nanoparticles can be isolated through ammonium persulfate digestion. The sphericity of particles results in faster cellular uptake. Negatively-charged CNCs are non-mucoadhesive and thus upon ingestion can penetrate into the buccal and intestinal mucosa. One may augment the absorption of CNCs by targeted receptor-mediated endocytosis. It was postulated that sodium bicarbonate secretion into the duodenum can alter CNCs surface chemistry and influence CNC interaction with gut microbiota.  相似文献   
7.
《Ceramics International》2020,46(6):7888-7895
Graphite carbon nitride (g-C3N4) is an appealing metal-free photocatalyst for hydrogen evolution, but the potential has been limited by its poor visible-light absorption and unsatisfactory separation of photo-induced carriers. Herein, a facile one-pot strategy to fabricate carbon self-doped g-C3N4 composite through the calcination of dicyanamide and trace amounts of dimethylformamide is presented. The as-obtained carbon self-doped catalyst is investigated by X-ray photoelectron spectroscopy (XPS), confirming the substitution of carbon atoms in original sites of bridging nitrogen. We demonstrate that the as-prepared materials display remarkably improved visible-light absorption and optimized electronic structure under the premise of principally maintaining the tri-s-triazine based crystal framework and surface properties. Furthermore, the carbon doped g-C3N4 composite simultaneously weakens the transportation barrier of charge carriers, suppresses charge recombination and raises the separated efficiency of photoinduced holes and electrons on account of the extension of pi conjugated system. As a result, carbon self-doped g-C3N4 exhibits 4.3 times greater photocurrent density and 5.2 times higher hydrogen evolution rate compared with its bulk counterpart under visible light irradiation.  相似文献   
8.
This paper investigates an adaptive sampling rate control scheme for networked control systems (NCSs) subject to packet disordering. The main objectives of the proposed scheme are (a) to avoid heavy packet disordering existing in communication networks and (b) to stabilize NCSs with packet disordering, transmission delay and packet loss. First, a novel sampling rate control algorithm based on statistical characteristics of disordering entropy is proposed; secondly, an augmented closed-loop NCS that consists of a plant, a sampler and a state-feedback controller is transformed into an uncertain and stochastic system, which facilitates the controller design. Then, a sufficient condition for stochastic stability in terms of Linear Matrix Inequalities (LMIs) is given. Moreover, an adaptive tracking controller is designed such that the sampling period tracks a desired sampling period, which represents a significant contribution. Finally, experimental results are given to illustrate the effectiveness and advantages of the proposed scheme.  相似文献   
9.
10.
In this paper, we investigated the effect of PEI cathode interlayer on the work function and the interface resistance of ITO electrode in the inverted polymer solar cells (PSCs) based on PBDTTT-C-T:PC70BM. It is found that a very thin layer of PEI (⩽5.5 nm), either linear PEI (l-PEI) or branched PEI (b-PEI) with different molecular weights, is enough to lower the work function of the ITO electrode and to enhance the photovoltaic performance of the devices. The champion power conversion efficiency (PCE) of the devices with the PEI cathode interlayer is 7.84%, more than doubled of that without the interlayer. However, a thicker PEI interlayer (⩾10 nm) results in abrupt decrease of the PCEs due to the increase of the resistance. Interestingly, for the thicker interlayers, the l-PEI shows high photovoltaic performance than that of b-PEI, which can also be explained by their difference in the resistances. This work supplies an insight into the function of PEI cathode interlayer on improving the work function and resistance of ITO electrode in the inverted PSCs, and provides some instructions on the future design of interlayer materials in PSCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号